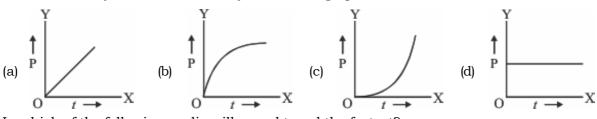
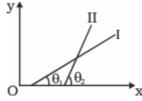

Studymate Foundation Paper

Date : 23/12/2018 Duration : 90 Min.		Physics,	Physics, Chemistry & Mathematics/Biology (Set-2)				
Ma	x. Marks : 90		•				XI
Gen 1. 2. 3. 4. 5. 6. 7.	There is only ONE treated as wrong res The paper contains	ompulsory. otted ONE mark fo the total score will correct response f ponse. 90 questions (Phy students attempt P	be made if no respo for each question. I sics 1-30, Chemistr	onse is indica Filling up M(y 31-60, M at	hematics 61-90 / Bi	response in ology 61-90).	each question will be
			P	hysics			
1.	Error in the n	neasurement (•	1%. Then erro	or in the v	volume is
	(a) 1%	(b)		(c)	3%		8%
2.	formula of S_{ntl} (a) [M ¹ L ⁰ T ¹]	h is (b)	$[M^{1}L^{-1}T^{-1}]$	(c)		meaning (d)	s. The dimensiona $[\mathrm{M}^{0}\mathrm{L}^{1}\mathrm{T}^{0}]$
8.	If $ \overrightarrow{\mathbf{v}_1} + \overrightarrow{\mathbf{v}_2} = \overrightarrow{\mathbf{v}_1} $	$ v_1 - v_2 $ and $ v_1 $	$_2$ is finite the	en			
	(a) $\overrightarrow{v_1}$ is para	allel to $\overrightarrow{\mathbf{v}_2}$		(c)	$\overrightarrow{\mathbf{v}_1} = \overrightarrow{\mathbf{v}_2}$		
	(c) $ \overrightarrow{\mathbf{v}_1} = \overrightarrow{\mathbf{v}_2} $			(d)	$\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ is	mutually	, perpendicular
1.	Two particles the same time					dii r ₁ and	r_2 respectively wit
	(a) r_1 / r_2	(b)	$\sqrt{r_2 / r_1}$	(c)	$(r_1/r_2)^2$	(d)	$(r_2 / r_1)^2$
5.	In which of th	e following ca	ses, the work	done by a	a gas is minim	um?	
	(I) P V	(II) (b)	$ \begin{array}{c} \uparrow \\ P \\ \hline \\ V \longrightarrow \\ (II) \end{array} $	(III) (c)	P P (III)	(IV) (d)	P P V→ (IV)


6. A block is kept on the floor of an elevator at rest. The elevator starts descending with an acceleration of 12 m/s^2 . Taking g = 10 m/s^2 , find out the displacement of the block during the first 0.2 sec after the start.

$$m$$
 $a = 12 \text{ m/s}^{-12}$

- (a) 0.04 meter (b) 0.24 meter (c) 0.2 meter (d) 0.02 meter
- **7.** A satellite is orbiting around the earth with a period T. If the earth suddenly shrinks to half its radius without change in mass, the period of revolution of the satellite will be
 - (a) $\frac{T}{\sqrt{2}}$ (b) $\frac{T}{2}$ (c) $\frac{T}{2\sqrt{2}}$ (d) $\sqrt{2}$ T
- **8.** Figure shows a siphon. The liquid is water. The pressure difference $P_B P_A$ between the points A and B is

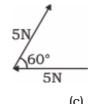

9. A motor drives a body along a straight line with a constant force. The power P developed by the motor must vary with time t. Identify the correct graph.

Gas

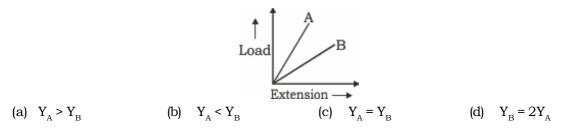
(d)

- **10.** In which of the following media will sound travel the fastest?
 - (a) Solid (b) Both solid and liquid
 - (c) Liquid
- **11.** In the following given curves the relation between the slopes will be


```
(a) \tan \theta_1 > \tan \theta_2 (b) \tan \theta_2 > \tan \theta_1 (c) \tan \theta_1 = \tan \theta_2 (d) None of these


12. What will be the value of acceleration due to gravity at the surface of a planet having radius \left(\frac{1}{4^{th}}\right) to radius of earth and density half of the earth :

(a) \frac{g}{2} (b) 2g (c) \frac{g}{8} (d) g
```

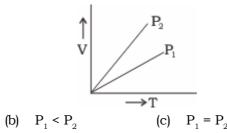

13. A stone is dropped into a well. If the depth of water below the top be h and velocity of sound in air be v, then the time after which splash of sound is heard is

(a)
$$\sqrt{\frac{2h}{g}} + \frac{h}{v}$$
 (b) $\sqrt{\frac{2h}{g}} - \frac{h}{v}$ (c) $\sqrt{\frac{2h}{g}}$ (d) $\sqrt{\frac{2h}{g}} \times \frac{h}{v}$

- **14.** In the relation $\left(P + \frac{a}{V^2}\right)(V b) = R\theta$. Where p = pressure, V = volume, R = gas const., $\theta = temperature & a and b are some constant. the dimension of b is$ $(a) <math>M^{\circ}L^{3}T^{\circ}$ (b) $M^{\circ}L^{-3}T^{\circ}$ (C) $ML^{2}T^{\circ}$ (d) None of these
- **15.** Two force, each numerically equal to 5N, are acting as shown in the figure. Then the resultant is

- (a) 2.5 N (b) 5 N (c) $5\sqrt{3}\text{N}$ (d) 10 N**16.** A carnot engine has an efficiency of 50% when its sink temperature is 27°C. What must be
 - the change in its source temperature for making efficiency 60%?
 - (a) 250 K (b) 200 K (c) 180 K (d) 150 K
- **17.** Find the torque of a force $\vec{F} = (-3\hat{i} + \hat{j} + 5\hat{k})N$ acting at the point $\vec{r} = (7\hat{i} + 3\hat{j} + \hat{k})m$ about the origin
 - (a) $14\hat{i} 38\hat{j} + 16\hat{k}$ (b) $4\hat{i} + 4\hat{j} + 6\hat{k}$ (c) $-14\hat{i} + 38\hat{j} 16\hat{k}$ (d) $-4\hat{i} 4\hat{j} 6\hat{k}$
- **18.** Three particles each of mass m are located at the vertices of an equilateral triangle ABC. They start moving with equal speed *v* each along the medians of the triangle and collide at its centroid G. If after collision, A comes to rest and B retraces its path along GB, then C
 - (a) also comes to rest
 - (b) moves with a speed v along CG
 - (c) moves with a speed v along BG
 - (d) moves with a speed v along AG
- **19.** A man can swim in still water with a velocity of 10 km/h, when the water of the river is flowing with some velocity. When the man swims at an angle of 30° with the normal on the bank of the river, he reaches the point just opposite to the starting point. The velocity of the water of the river is
 - (a) 10 km/h (b) 5 km / h (c) $5\sqrt{2}\text{ km / h}$ (d) $10\sqrt{2}\text{ km / h}$
- **20.** The dimensions of two wires A and B are the same But their materials are different. Their load-extension graphs are shown. If Y_A and Y_B are the values of Young's modulus of elasticity of A and B respectively, then

21. O is the centre of an equilateral triangle ABC. F₁, F₂ and F₃ are the three forces acting along the sides AB, BC and AC respectively. What should be the value of F₃ so that the total torque about O is zero?

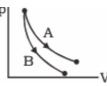

(a) $2(F_1 + F_2)$

- (b) $\frac{F_1 + F_2}{2}$
- (c) $F_1 F_2$
- (d) $F_1 + F_2$

(a) $P_1 > P_2$

(a) 1 ms⁻¹

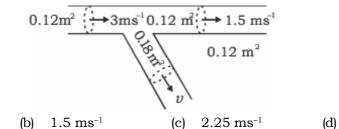
22. V versus T curves at constant pressures P_1 and P_2 for an ideal gas are shown in figure. Here

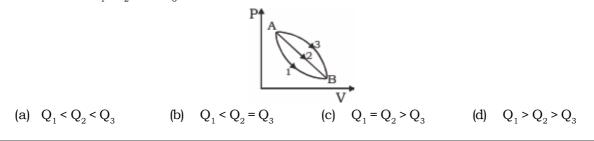


(d)
$$P_1 \ge P_2$$

3 ms⁻¹

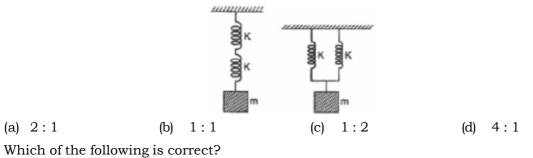
É,


23. Consider the processes A and B shows in figure. It is possible that


- (a) both the processes are isothermal (b) both the processes are adiabatic
- (c) A is isothermal and B is adiabatic (d) A is adiabatic and B is isothermal
- **24.** Figure represents two simple harmonic motions

The parameter which has different values in the two motions is

- (a) amplitude (b) frequency (c) phase (d) maximum velocity
- **25.** An incompressible liquid travels as shown in figure. The speed of the fluid in the lower branch will be


26. An ideal gas of mass m in a state A goes to another state B via three different process as shown in figure. If Q₁, Q₂ and Q₃ denote the heat absorbed by the gas along the three paths, then

27. A particle moves in a circular path with a uniform speed. Its motion is

- (a) periodic
- (c) simple harmonic

- (b) oscillatory
- (d) angular simple harmonic
- 28. Two identical springs, each of spring constant K, are connected in series and parallel as shown in figure. A mass m is suspended from them. The ratio of their frequencies of vertical oscillations will be

- **29.** Which of the following is correct?
 - (a) A particle moving with constant speed can have variable acceleration
 - (b) A particle moving with constant velocity can have variable acceleration
 - (c) If velocity of the particle is zero, acceleration must be zero
 - (d) If acceleration of the particle is zero, velocity must be zero
- 30. Two blocks A and B of masses 2 kg and 1 kg rest on a friction less surface. A force of 3 N acts on A as shown in figure. The force exerted by A on B is
 - (a) 1 N 3 N (b)
 - (c) 2 N (d) Zero

Chemistry

31.	The increasing order o	of the	e ionic radii of the	giveı	n isoelectronic spec	cies	is
	(a) S ²⁻ , Cl ⁻ , Ca ²⁺ , K ⁺	(b)	Ca ²⁺ , K ⁺ , Cl ⁻ , S ²⁻	(c)	K ⁺ , S ²⁻ , Ca ²⁺ , Cl ⁻	(d)	Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻
32.	The species having bo	nd oi	rder different from	that	in CO is		
	(a) NO⁻	(b)	NO^+	(c)	CN-	(d)	N_2
33.	Which of the following	is a j	polar molecule?				
	(a) BF ₃	(b)	SF_4	(c)	SiF_4	(d)	XeF ₄
34.	In order to increase the	e vol	ume of a gas by 10 ^o	%, tł	ne pressure of the g	as sl	hould be
	(a) decreased by 10%	(b)	decreased by 1%	(c)	increased by 10%	(d)	increased by 1%
35.	The density of a gas is	1.96	4 g dm⁻³ at 273 K a	nd 7	6 cm Hg. The gas i	s	
	(a) CH ₄	(b)	C_2H_6	(c)	CO_2	(d)	Xe
36.	For a reaction A + 2B and 8 moles of B is	→ C,	the amount of C fo	orme	d by starting the re	actio	on with 5 moles of A
	(a) 5 moles	(b)	8 moles	(c)	16 moles	(d)	4 moles
37.	Which has the maximu	ım n	umber of molecule	es an	nong the following?		
	(a) 44 g of CO_2	(b)	$48 \mathrm{gO}_2$	(c)	$8 \mathrm{g}\mathrm{H}_2$	(d)	$64 \operatorname{g} \mathrm{SO}_2$
38.	The wave number of th 9 times the Rydberg's of	-			- •	roge	n will be equal to 8/
	(a) $n = 3$ to $n = 1$	(b)	n = 10 to $n = 1$	(c)	n = 9 to $n = 1$	(d)	n = 2 to $n = 1$

(a) n (a) ເບ

39.	9. The following quantum numbers are possible for how	w may orbitals?								
	n = 3, l = 2, m = +2	0								
	(a) 1 (b) 2 (c) 3	3 (d) 4	ł							
40.	0. The correct decreasing order first ionization enthalp	pies of five elements of t	the second period							
	is									
	(a) $Be > B > C > N > F$ (b) $N > F > C > B > Be$ (c) F	F > N > C > Be > B (d) F	F > C > N > B > Be							
41.	L. $Zn^{2+} → Zn(s)$; E° = -0.76 V $Cu^{2+} → Cu(s)$; E° = -0.34	4 V								
	Which of the following is spontaneous?	Which of the following is spontaneous?								
	(a) $Zn^{2+} + Cu \rightarrow Zn + Cu^{2+}$ (b) (c)	$Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$								
	(c) $Zn^{2+} + Cu^{2+} \to Zn + Cu$ (d) r	none of these								
42.	2. The salt responsible for permanent hardness of $\rm H_{2}O$	is								
	(a) Na_2SO_4 (b) $Mg(HCO_3)_2$ (c) N	NaCl (d) M	MgCl ₂							
43.	3. The least stable hydride of 15th group is									
	(a) NH_3 (b) PH_3 (c) A	AsH ₃ (d) E	BiH ₃							
44.	The sequence of ionic mobility in aqueous solution is									
	(a) $Rb^+ > K^+ > Cs^+ > Na^+$ (b) N	$Na^+ > K^+ > Rb^+ > Cs^+$								
	(c) $K^+ > Na^+ > Rb^+ > Cs^+$ (d) (d)	$Cs^+ > Rb^+ > K^+ > Na^+$								
45.	5. Which pair of the following chlorides do not impart c	olour to the flame?								
	(a) BeCl_2 and SrCl_2 (b) BeCl_2 and MgCl_2 (c) M	$MgCl_2$ and $CaCl_2$ (d) E	BaCl_2 and SrCl_2							
46.	5. The value of enthalpy change (Δ H) for the reaction									
	$C_2H_5OH(h + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(h)$									
	at 27°C is –1366·5 kJ mol ⁻¹ . The value of internal ene temperature will be	ergy change for the abov	ve reaction at this							
	(a) -1371.5 kJ (b) -1369.0 kJ (c) -1369.0 kJ	-1.364·0 k.I (d) -	-1361·5 kJ							
47.	7. For reaction 2Cl(g) \rightarrow Cl ₂ (g), the signs of Δ H and Δ S r		1001010							
	(a) +,- (b) +,+ (c) -		- +							
48	3. Which one of the following molecular hydrides acts a		,							
10.	(a) CH_4 (b) NH_3 (c) H		зн							
49.	9. The hydrogen ion concentration of a 10^{-8} M HCl aque	2	2 0							
			10^{-7} M							
50.										
00.	(a) Cl^- (b) ClO_4^- (c) Cl^-	_	MnO ⁻ ₄							
51.			4							
01.	is	grise to only one alderry	de as the product							
	(a) But-1-ene (b) F	Propane								
		2-Methylprop-1-ene								
52.										
		nex-2-ene								
		1,1-diphenylethylene								
	(c) 1000 c juic (d) 1	-,- aipitoitytoitte								

of peroxide as (a) But-2-ene (b) But-1-ene (c) propane (d) hex-1-ene (d) hex-1-ene (e) Propane (d) hex-1-ene (f) White lung cancer' is caused by (a) asbestos (b) silica (c) textiles (d) paper 55. London smog is found in (a) Summer during day time (b) Summer during morning time (c) Winter during morning time (d) Summer during day time 56. The stability of +1 oxidation state increases in the sequence (a) Ga < In < Al < Tl (b) Al < Ga < In < Tl (c) Tl < In < Ga < Al (d) In < Tl < Ga < Tl < Tl (a) In < Tl < Ga < Tl < Tl (b) Al < Ga < In < Tl (c) Tl < In < Ga < Al (d) In < Tl < Ga < Tl < Tl (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59. The IUPAC name of the compound $CH_3CH = CH = CH$ is								helps excel in boards		
54. White lung cancer' is caused by (a) asbestos (b) silica (c) textiles (d) paper 55. London smog is found in (a) Summer during day time (b) Summer during morning time (c) Winter during morning time (d) Summer during day time 56. The stability of +1 oxidation state increases in the sequence (a) Ga < In < Al < T1 (b) Al < Ga < In < T1 (c) T1 < In < Ga < Al (d) In < T1 < Ga < 57. The structure of diborane (B, H,) contains (a) four 2c-2e bonds and two 3c-2e bonds (b) two 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-3e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-3e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-3e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-3e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-3e conds (e) for 3 and 6 (f) 6, 4 and 5 59. The IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-en 60. Which of the following species is not electrophilic in nature? (a) Cl ⁺ (b) EH ₃ (c) H ₃ O ⁺ (d) ⁻ NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of sin(45 ^s + 0) - cos(45 ^s - 0) is (a) 2 cos 0 (b) 2 sin 0 (c) 1 (d) 0 62. If sin 0 + cos 0 = 1, then the value of sin 20 is equal to (a) 1 (b) $\frac{1}{2}$ (c) 3 (d) 4 64. The value of 1 + $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ · $\frac{1}{2}$ · $\frac{1}{2}$ (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{\frac{1}{4^{n-1} - \frac{1}{4^{n-1}}}$? (a) 1 (b) <i>i</i> (c) -1 (d) - <i>i</i> (b) In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be definem A to B is	53.	The alkene that will give the same product with HBr in the absence as well as in the presence of peroxide as								
(a) asbestos (b) silica (c) textiles (d) paper 55. London smog is found in (a) Summer during day time (b) Summer during morning time (c) Winter during morning time (d) Summer during day time 56. The stability of +1 oxidation state increases in the sequence (a) Ga < In < Al < Tl (b) Al < Ga < In < Tl (c) Tl < In < Ga < Al (d) In < Tl < Ga < 57. The structure of diborane (B,H _a) contains (a) four 2c-2e bonds and two 3c-2e bonds (b) two 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (c) two 2c-3e bonds and two 3c-2e bonds (d) four 2c-2e bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59. The IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-en 60. Which of the following species is not electrophilic in nature? (a) Cl' (b) BH ₃ (c) H ₃ O' (d) 'NO ₂ FOR NON-MEDICAL STUDENTS ONLY Nathematics 61. The value of $sin(45^{\circ} + \theta) - cos(45^{\circ} - \theta)$ is (a) 2 cos θ (b) 2 sin θ (c) 1 (d) θ 62. If $sin \theta + cos \theta = 1$, then the value of sin 20 is equal to (a) 1 (b) $\frac{1}{2}$ (c) θ (d) $\frac{1}{4}$ 64. The value of $1 + l^2 + l^4 + l^2 +, + l^{60}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{l^{4n+1} - l^{4n+1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) <i>i</i> 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined to B is		(a) But-2-ene	(b)	But-1-ene	(c)	propane	(d)	hex-1-ene		
55. London smog is found in (a) Summer during day time (c) Winter during morning time (d) Summer during day time 56. The stability of +1 oxidation state increases in the sequence (a) Ga < In < Al < Tl (b) Al < Ga < In < Tl (c) Tl < In < Ga < Al (d) In < Tl < Ga < 57. The structure of diborane (B ₂ H ₄) contains (a) four 2c-2e bonds and two 3c-2e bonds (b) two 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (f) two 2c-2e bonds and four 3c-2e bonds (h) two 2c-2e bonds and four 3c-2e bonds (i) two 2c-2e bonds and four 3c-2e bonds (i) four 2c-2e bonds and four 3c-2e bonds 58. In hexa-1, 3-dien-5-yne, the number of C-C, σ , C-C π and C-H σ bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) two 2c-2e bonds and four 3c-2e bonds 59. The IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-en 60. Which of the following species is not electrophilic in nature? (a) Cl ⁺ (b) BH ₃ (c) H ₃ O ⁻ (d) 'NO ₂ FOR NON-MEDICAL STUDENTS ONLY 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70.	54.	'White lung cancer' is	s caus	ed by						
(a) Summer during day time (b) Summer during morning time (c) Winter during morning time (d) Summer during day time (e) Winter during morning time (d) Summer during day time (e) Winter during morning time (f) Summer during day time (a) Ga < In < Al < Tl (b) Al < Ga < In < Tl (c) Tl < In < Ga < Al (d) In < Tl < Ga < 57. The structure of diborane (B ₂ H _d) contains (a) four 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (f) four 2c-2e bonds and four 3c-2e bonds four 3c-2e bonds (f) four 2c-2e bonds and four 3c-2e bonds four 3c-2e bonds (f) four 2c-2e bonds and four 3c-2e bonds four 3c-2e		(a) asbestos	(b)	silica	(c)	textiles	(d)	paper		
(c) Winter during morning time (d) Summer during day time 56. The stability of +1 oxidation state increases in the sequence (a) Ga < In < Al < Tl (b) Al < Ga < In < Tl (c) Tl < In < Ga < Al (d) In < Tl < Ga < 5. 57. The structure of diborane (B ₂ H ₀) contains (a) four 2c-2e bonds and two 3c-2e bonds (b) two 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds 58. In hexa-1, 3-dien-5-yne, the number of C-C, σ , C-C π and C-H σ bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59. The IUPAC name of the compound CH ₂ CH = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-en 60. Which of the following species is not electrophilic in nature? (a) Cl ⁺ (b) BH ₃ (c) H ₃ O ⁺ (d) 'NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of sin(45° + 0) - cos(45° - 0) is (a) 2 cos 0 (b) 2 sin 0 (c) 1 (d) 0 62. If sin 0 + cos 0 = 1, then the value of sin 20 is equal to (a) 1 (b) ¹ / ₂ (c) 0 (d) -1 63. If x^* - 1 is divisible by x - k , then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^1 + t^2 +, + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 (c) 3 (d) 4 65. What is the value of $\frac{t^{4n-1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) - <i>i</i> 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. T the number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined to be is	55.	London smog is found	d in							
56. The stability of +1 oxidation state increases in the sequence (a) Ga < In < Al < T1 (b) Al < Ga < In < T1 (c) T1 < In < Ga < Al (d) In < T1 < Ga < 57. The structure of diborane (B ₂ H _e) contains (a) four 2c-2e bonds and two 3c-2e bonds (b) two 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds 58. In hexa-1, 3-dien-5-yne, the number of C-C, σ , C-C π and C-H σ bonds respectively are (a) 5. 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59. The IUPAC name of the compound CH ₂ CH = CH = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-en 60. Which of the following species is not electrophilic in nature? (a) Cl ⁻ (b) EH ₃ (c) H ₃ O ⁻ (d) "NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of sin(45 [°] + 0) - cos(45 [°] - 0) is (a) 2 cos 0 (b) 2 sin 0 (c) 1 (d) 0 62. If sin 0 + cos 0 = 1, then the value of sin 20 is equal to (a) 1 (b) ½ (c) 0 (d) -1 63. If $x^{n} - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^{n} + t^{n} + t^{n} + t^{n} = t^{m-1} + t^{m-1} + t^{m-1} = t^{m-1} + t^{m-1} + t^{m-1} = t^{m-1} + t^{m-$		(a) Summer during	day tii	ne	(b)	Summer during	morr	ning time		
(a) Ga < In < Al < T1 (b) Al < Ga < In < T1 (c) Tl < In < Ga < Al (d) In < Tl < Ga < . 57. The structure of diborane (B ₂ H ₉) contains (a) four 2c-2e bonds and two 3c-2e bonds (b) two 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59. The IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-en 60. Which of the following species is not electrophilic in nature? (a) Cl ⁻ (b) BH ₃ (c) H ₃ O ⁻ (d) 'NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of $sin(45^{\circ} + 0) - cos(45^{\circ} - 0)$ is (a) 2 cos 0 (b) 2 sin 0 (c) 1 (d) 0 62. If sin $\theta + cos \theta = 1$, then the value of sin 20 is equal to (a) 1 (b) ^{1/2} (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k_i$ then the least positive value of k is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{i^{4n+1} - i^{4n+1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) - <i>i</i> 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. T the number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is		(c) Winter during m	orning	g time	(d)	Summer during	day t	ime		
57. The structure of diborane $(B_{2}H_{4})$ contains (a) four 2c-2e bonds and two 3c-2e bonds (b) two 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 58. In hexa-1, 3-dien-5-yne, the number of C-C, σ , C-C π and C-H σ bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59. The IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-en 60. Which of the following species is not electrophilic in nature? (a) Cl ⁻ (b) BH ₃ (c) H ₃ O ⁻ (d) 'NO ₂ FOR NON-MEDICAL STUDENTS ONLY 10. 10	56 .	The stability of +1 ox	idatio	n state increases	in the	e sequence				
(a) four 2c-2e bonds and two 3c-2e bonds (b) two 2c-2e bonds and four 3c-2e bonds (c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds (e) two 2c-2e bonds and four 3c-2e bonds (f) four 2c-2e bonds and four 3c-2e bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 (e) 7 the IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-end (e) Which of the following species is not electrophilic in nature? (a) Cl ⁺ (b) EH ₃ (c) H ₃ O ⁺ (d) [*] NO ₂ FOR NON-MEDICAL STUDENTS ONLY FOR NON-MEDICAL STUDENTS FOR NON-MEDICAL STUDENTS FOR NO		(a) Ga < In < Al < Tl	(b)	Al < Ga < In < Tl	(c)	Tl < In < Ga < Al	(d)	In < Tl < Ga < Al		
(c) two 2c-2e bonds and two 3c-2e bonds (d) four 2c-2e bonds and four 3c-2e bonds 58 . In hexa-1, 3-dien-5-yne, the number of C-C, σ , C-C π and C-H σ bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59 . The IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-end 60 . Which of the following species is not electrophilic in nature? (a) Cl ⁻ (b) BH ₃ (c) H ₃ O ⁻ (d) 'NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61 . The value of $\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta)$ is (a) $2\cos\theta$ (b) $2\sin\theta$ (c) 1 (d) 0 62 . If $\sin\theta + \cos\theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63 . If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64 . The value of $1 + t^2 + t^4 + t^6 + \dots + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) $-i$ 65 . What is the value of $\frac{t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (d) $-i$ 66 . In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67 . Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is	57.	The structure of dibo	rane ($B_{2}H_{6}$) contains						
58. In hexa-1, 3-dien-5-yne, the number of C-C, σ , C-C π and C-H σ bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59. The IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-end 60. Which of the following species is not electrophilic in nature? (a) Cl ⁺ (b) BH ₃ (c) H ₃ O ⁺ (d) ⁺ NO ₂ FOR NON-MEDICAL STUDENTS ONLY 10. Mathematics 61. The value of sin(45° + θ) - cos(45° - θ) is (a) 2 cos θ (b) 2 sin θ (c) 1 (d) 0 62. If sin θ + cos θ = 1, then the value of sin 20 is equal to (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If x^n - 1 is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + \hat{t} + \hat{t}^{\hat{t}} + \hat{t}^{\hat{t}} + + \hat{t}^{0}$ is (a) 1 (b) <i>i</i> (c) -1 (d) 2 65. What is the value of $\frac{i^{4n+1} - i^{4n-1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) - <i>i</i> 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be definded from A to B is		(a) four 2c-2e bonds	and tv	vo 3c-2e bonds	(b)	two 2c-2e bonds a	and fo	our 3c-2e bonds		
(a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 59. The IUPAC name of the compound CH ₃ CH = CHC = CH is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-end 60. Which of the following species is not electrophilic in nature? (a) Cl [*] (b) BH ₃ (c) H ₃ O [*] (d) [*] NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of $sin(45^{\circ} + \theta) - cos(45^{\circ} - \theta)$ is (a) $2 cos \theta$ (b) $2 sin \theta$ (c) 1 (d) 0 62. If $sin \theta + cos \theta = 1$, then the value of $sin 2\theta$ is equal to (a) 1 (b) ¹ / ₂ (c) 0 (d) -1 63. If $x^{n} - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^{2} + t^{4} + t^{6} + + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (d) $-i$ 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is		(c) two 2c-2e bonds a	and tw	o 3c-2e bonds	(d)	four 2c-2e bonds	and f	our 3c-2e bonds		
59. The IUPAC name of the compound $CH_3CH = CHC = CH$ is (a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-ene 60. Which of the following species is not electrophilic in nature? (a) Cl [*] (b) BH_3 (c) H_3O° (d) *NO_2 FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of $\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta)$ is (a) $2\cos\theta$ (b) $2\sin\theta$ (c) 1 (d) 0 62. If $\sin\theta + \cos\theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (d) -i 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defifted from A to B is	58.	In hexa-1, 3-dien-5-y	vne, th	e number of C–C,	σ, C–	C π and C–H σ bone	ds re	spectively are		
(a) Pent-4-yn-2-ene (b) Pent-3-en-1-yne (c) Pent-4-en-4-yne (d) Pent-1-yn-3-energy (a) Cl ⁺ (b) EH ₃ (c) H ₃ O ⁺ (d) ⁺ NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of $\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta)$ is (a) $2\cos\theta$ (b) $2\sin\theta$ (c) 1 (d) 0 62. If $\sin\theta + \cos\theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^{n} - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^{2} + t^{4} + t^{2} + + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) - <i>i</i> 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be definded from A to B is		(a) 5, 4 and 6	(b)	6, 3 and 5	(c)	5, 3 and 6	(d)	6, 4 and 5		
60. Which of the following species is not electrophilic in nature? (a) Cl [*] (b) BH ₃ (c) H ₃ O [*] (d) [*] NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of $\sin(45^\circ + \theta) - \cos(45^\circ - \theta)$ is (a) $2\cos\theta$ (b) $2\sin\theta$ (c) 1 (d) 0 62. If $\sin\theta + \cos\theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) ¹ / ₂ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (c) 0 (d) $-i$ 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be definded from A to B is	59 .	The IUPAC name of the	he cor	npound CH ₃ CH = (CHC =	≡ CH is				
(a) Cl ⁺ (b) BH ₃ (c) H ₃ O ⁺ (d) ⁺ NO ₂ FOR NON-MEDICAL STUDENTS ONLY Mathematics 61. The value of $\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta)$ is (a) $2\cos\theta$ (b) $2\sin\theta$ (c) 1 (d) 0 62. If $\sin\theta + \cos\theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) ¹ / ₂ (c) 0 (d) -1 63. If $x^{n} - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^{2} + t^{4} + t^{6} + \dots + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) - <i>i</i> 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be definded from A to B is		(a) Pent-4-yn-2-ene	(b)	Pent-3-en-1-yne	(c)	Pent-4-en-4-yne	(d)	Pent-1-yn-3-ene		
FOR NON-MEDICAL STUDENTS ONLYMathematics61. The value of $sin(45^\circ + \theta) - cos(45^\circ - \theta)$ is(a) $2 cos \theta$ (b) $2 sin \theta$ (c) 1 (d) 0 62. If $sin \theta + cos \theta = 1$, then the value of $sin 2\theta$ is equal to(a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is(a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + + t^{20}$ is(a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$?(a) 1 (b) i (c) -1 (d) $-i$ 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is(a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be definded from A to B is	60.	Which of the followin	ig spee	cies is not electrop	ohilic	in nature?				
Mathematics61. The value of $sin(45^\circ + \theta) - cos(45^\circ - \theta)$ is(a) $2 cos \theta$ (b) $2 sin \theta$ (c) 1 (d) 0 62. If $sin \theta + cos \theta = 1$, then the value of $sin 2\theta$ is equal to(a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is(a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{20}$ is(a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$?(a) 1 (b) i (c) -1 (d) $-i$ 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is(a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is		(a) C1+	(b)	BH_3	(c)	H ₃ O⁺	(d)	$^{+}NO_{2}$		
Mathematics 61. The value of $\sin(45^\circ + \theta) - \cos(45^\circ - \theta)$ is (a) $2\cos\theta$ (b) $2\sin\theta$ (c) 1 (d) 0 62. If $\sin \theta + \cos \theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (d) $-i$ 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be definded from A to B is										
61. The value of $\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta)$ is (a) $2\cos\theta$ (b) $2\sin\theta$ (c) 1 (d) 0 62. If $\sin\theta + \cos\theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (d) -i 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is			F	OR NON-MEDICAL	STUE	DENTS ONLY				
(a) $2 \cos \theta$ (b) $2 \sin \theta$ (c) 1 (d) 0 62. If $\sin \theta + \cos \theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{2^0}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) - <i>i</i> 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is				Mather	natio	CS S				
62. If $\sin \theta + \cos \theta = 1$, then the value of $\sin 2\theta$ is equal to (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (d) -i 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is	61.	The value of sin(45°	+ 0) –	$\cos(45^\circ - \theta)$ is						
(a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{20}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (d) -i 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is		(a) 2 cos θ	(b)	$2 \sin \theta$	(c)	1	(d)	0		
(a) 1 (b) $\frac{1}{2}$ (c) 0 (d) -1 63. If $x^n - 1$ is divisible by $x - k$, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{2^0}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) i (c) -1 (d) -i 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is	62.	If $\sin \theta + \cos \theta = 1$, the second secon	hen th	e value of sin 2θ i	s equ	al to				
 63. If xⁿ - 1 is divisible by x - k, then the least positive value of k is (a) 1 (b) 2 (c) 3 (d) 4 64. The value of 1 + t² + t⁴ + t⁶ + + t²⁰ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of time the value of tim					-		(d)	-1		
(a) 1 (b) 2 (c) 3 (d) 4 64. The value of $1 + t^2 + t^4 + t^6 + \dots + t^{2^0}$ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{t^{4n+1} - t^{4n-1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) - <i>i</i> 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is	63.	()					()			
 64. The value of 1 + t² + t⁴ + t⁶ + + t²⁰ is (a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of tite that is the value of that is the value of the			-				(d)	4		
(a) 1 (b) -1 (c) 0 (d) 2 65. What is the value of $\frac{i^{4n+1} - i^{4n-1}}{2}$? (a) 1 (b) <i>i</i> (c) -1 (d) $-i$ 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is	61		. ,		(C)	5	(u)	7		
 65. What is the value of \$\frac{i^{4n+1} - i^{4n-1}}{2}\$? (a) 1 (b) \$i\$ (c) -1 (d) -\$i\$ 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let \$n(A) = m\$ and \$n(B) = n\$. Then the total number of non-empty relations that can be defined from A to B is 	04.				(-)	0	(-1)	2		
 (a) 1 (b) i (c) -1 (d) -i (b) i (c) -1 (d) -i (c) 1 (d) -i (c) 1 (d) -i (c) 1 (d) -i (c) 1 (d) 1 (d) -i (c) 1 (d) 1 (d) 1 (d) (d) 1 (d) 1 (d) (e) 1 (d) 1 (d) (f) 1 (d) 1 (d) (f) 1 (d) 1 (d) (f) 1 (d) 1 (d) (g) 1 (d) 1 (d) <li< th=""><th></th><th>(a) 1</th><th>(D)</th><th>-1</th><th>(C)</th><th>0</th><th>(a)</th><th>2</th></li<>		(a) 1	(D)	-1	(C)	0	(a)	2		
(a) 1 (b) <i>i</i> (c) -1 (d) $-i$ 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is	~-	XX71 4 · 41 1- C	i^{4n+1} -	$-i^{4n-1}$						
 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let n(A) = m and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is 	65.	what is the value of	2	2 ?						
 66. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. The number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let n(A) = m and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is 		(a) 1	(b)	i	(c)	-1	(d)	-i		
the number of person who read neither is (a) 240 (b) 290 (c) 180 (d) 160 67. Let $n(A) = m$ and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is	66.		. ,							
67. Let n(A) = m and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is				=	,					
67. Let n(A) = m and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is		(a) 240	(b)	290	(c)	180	(d)	160		
from A to B is	67.) = n. '	Then the total num		of non-empty relat				
(a) m^n (b) $n^m - 1$ (c) $mn - 1$ (d) $2^{mn} - 1$			-			1.0				
		(a) m^n	(b)	$n^m - 1$	(c)	mn-1	(d)	$2^{mn}-1$		

68.	The	domain and rang	e of t	he real function <i>f</i> d	lefine	ed by $f(x) = \frac{4-x}{x-4}$	is gi	iven by
	(a)	Domain = R, Rai	nge =	$\{-1, 1\}$	(b)	Domain = R – {–1	}, Ra	nge = R
	(c)	Domain = R - {4]	}, Raı	nge = {-1}	(d)			
	-	value of $\frac{1-\tan^2}{1+\tan^2}$	15°					
69.	The	value of $\frac{1+\tan^2}{1+\tan^2}$	15°	18				
	(a)	1	(b)	$\sqrt{3}$	(c)	$\frac{\sqrt{3}}{2}$	(d)	2
70.	The	value of tan 3A –	tan 2	2A – tan A is equal	to	_		
	(a)	tan 3A tan 2A ta	ın A					
	(b)	–tan 3A tan 2A t	an A					
	(c)	tan A tan 2A – ta	an 2A	tan 3A – tan 3A ta	n A			
	(d)	None of these						
71.	In a	n A.P. the $p^{ ext{th}}$ term	n is q	and the $(p + q)$ th t	erm	is 0. Then the $q^{ m th}$ t	erm	is
	(a)	- <i>p</i>	• •	-	(c)	p + q	(d)	p-q
72.	Sun	n of $1^2 + 2^2 + 3^2 + .$	+	n^2 is				
	(a)	$\frac{n(n+1)(n+2)}{6}$	(b)	$\frac{n(n+1)(2n+1)}{6}$	(c)	$\frac{n(n+1)(n-1)}{3}$	(d)	$\frac{n(n-1)(n-2)}{3}$
73.	Equ	ation of line passi	ng th	rough (1, 2) and pa	aralle	to the line $y = 3x$	– 1 i	s
	(a)	y + 2 = x + 1	(b)	y+2=3(x+1)	(c)	y - 2 = 3(x - 1)	(d)	y - 2 = x - 1
74.	If a,	<i>b</i> , <i>c</i> are in A.P., th	nen ti	he straight line ax	+ by	+ c = 0 will always	pass	s through
	(a)	(1,2)	(b)	(1, -2)	(c)	(2, 1)	(d)	(-2, 1)
75.	The	equation of the ci	rcle v	which passes throu	gh th	ne point (4, 5) and I	has i	ts centre at (2, 2) is
	(a)	$(x-2)^2 + (y-2)^2 =$	= 13			$(x-2)^2 + (y-2)^2 =$		
	(c)	$(x-2)^2 + (y+2)^2 =$	= 13		(d)	$(x+2)^2 + (y+2)^2 =$	13	
76.	Give	en that x , y and b	are r	eal numbers <i>x</i> < <i>y</i> ,	<i>b</i> < 0), then		
	(a)	$\frac{x}{b} < \frac{y}{b}$	(b)	$\frac{x}{b} \le \frac{y}{b}$	(c)	$\frac{x}{b} > \frac{y}{b}$	(b)	$\frac{x}{b} \ge \frac{y}{b}$
77.	The	re are 10 lamps in	n a ha	all. Each one of the	m ca	n be switched on i	nder	pendently. Find the
	nun	-		he hall can be illur	nina	ted.		
	(a)	$2^{10} - 1$	(b)	2^{10}	(c)	10!	(d)	10^{2}
78.		ry body in a room total number of p			ryboo	dy else. The total r	numl	per of shakes is 66.
	(a)	11	(b)	12	(c)	13	(d)	14
79 .	The	total number of t	erms	in the expansion o	of (x -	$(x-a)^{51} - (x-a)^{51}$ after	er sir	nplification is
	(a)	102	(b)	25	(c)	26	(d)	None of these

80.	If the	coefficient of x^7 a	and 2	a^8 in $\left(2+\frac{x}{3}\right)^n$ are a^8	equal	, then <i>n</i> is		
	(a)	56	(b)		(c)		(d)	15
81.	If ${}^{n}C_{1}$	$_{2} = {}^{n}C_{8}$, then <i>n</i> is	equa	l to				
	(a)	20	(b)	12	(c)	6	(d)	30
82.	The r	nean deviation of	the	data 2, 9, 9, 3, 6, 9), 4 fr	rom the mean is		
	(a)	2.23	(b)	2.57	(c)	3.23	(d)	3.57
83.				(0, -3) and its dire				
	()	0	. ,	$x^2 = 12y$. ,	C	. ,	$y^2 = 12x$
84.	In a r	ion-leap year, the	e prol	bability of having 5	3 tue	sdays or 53 wedne	esda	ys is
	(a)	$\frac{1}{7}$	(b)	$\frac{2}{7}$	(c)	$\frac{3}{7}$	(d)	None of these
85.	A sin vowe	-	ed at	random from the v	vord	'PROBABILITY'. Th	ie pr	obability that it is a
	(a)	$\frac{1}{2}$	(b)	$\frac{4}{11}$	(c)	$\frac{2}{11}$	(d)	$\frac{3}{11}$
96		0		11		11		11
86.				rpendicular drawn				_
	(a)	10		$\sqrt{34}$	(c)	$\sqrt{113}$	(d)	5√2
87.	$\lim_{x\to 0} -x$	$\frac{\sin x}{c(1+\cos x)}$ is equ	al to					
	(a)	0	(b)	$\frac{1}{2}$	(c)	1	(d)	-1
				4				
88.	$\lim_{x\to 0} \frac{1}{x}$	$\frac{x}{x}$ is equal to						
	(a)	1	(b)	-1	(c)	0	(d)	Does not exist
89.	If <i>f</i> (<i>x</i>)	$= x \sin x$, then f	$r\left(\frac{\pi}{2}\right)$	is equal to				
	(a)	0	(b)	1	(c)	-1	(d)	<u>1</u>
			(~)	-	(~)	-	(4)	2
90.	$\lim_{x\to\pi}\frac{\mathrm{si}}{x}$	$\frac{\ln x}{-\pi}$ is						
	(a)	1	(b)	2	(c)	-1	(d)	-2

FOR MEDICAL STUDENTS ONLY

Biology

- **61.** Which of the following pairs of animals has non glandular skin?
 - (a) Snake and Frog

(b) Chameleon and Turtle

(c) Frog and Pigeon

- (d) Crocodile and Tiger
- -(9)-

62. Which one of the following statements is incorrect? (a) Mesoglea is present in between ectoderm and endoderm in Obelia. (b) Radial symmetry is found in Asterias (c) Fasciola is a pseudocoelomate animal (d) Taenia is a triploblastic animal have two different types of symmetry "Radial & bilateral". **63.** Phylum (a) Coelenterata (b) Platyhelminthes (c) Nematoda (d) Echinodermata **64.** Body cavity is the cavity present between body wall and gut wall. In some animals the body cavity is not lined by mesoderm. Such animals are called (b) Pseudocoelomate (c) Coelomate (a) Acoelomate (d) Haemocoelomate **65.** Rearrange the following zones as seen in the root in vertical section and choose the correct option. A. Root hair zone Zone of meristems B D. Zone of maturation C. Rootcap zone E. Zone of elongation **Options:** (a) C, B, E, A, D (b) A, B, C, D, E (c) D, E, A, C, B(d) E, D, C, B, A 66. As we go from species to kingdom in a taxonomic hierarchy, the number of common characteristics (a) will decrease (b) will increase (c) remain same (d) may increase or decrease **67.** Match the following and choose the correct option: A. Family i. tuberosum B. Kingdom ii. Polymoniales iii. Solanum C. Order D. Species iv. Plantae Solanacea E. Genus v Options (a) i-D, ii-C, iii-E, iv-B, v-A (b) i-E, ii-D, iii-B, iv-A, v-C (c) i-D, ii-E, iii-B, iv-A, v-C (d) i-E, ii-C, iii-B, iv-A, v-D 68. Difference between Virus and Viroid is (a) absence of protein coat in viroid but present in virus (b) presence of low molecular weight RNA in virus but absent in viroid (c) both (a) and (b) (d) none of the above **69.** A Prothallus is (a) a structure in pteridophytes formed before the thallus develops. (b) a sporophytic free living structure formed in pteridophytes. (c) a gametophyte free living structure formed in pteridophytes.

(d) a primitive structure formed after fertilization in pteridophytes.

			helps excel in board						
70.	0. If the diploid number of a flowering plant is 36. What would be the chendosperm ?	iromo	osome number in it						
	(a) 36 (b) 18 (c) 54	(d)	72						
71.	1. Pericycle in roots is never thick and sclerenchymatous because	. ,							
	(a) It does not act as mechanical tissue in roots.								
	(b) It gives rise to root hair								
	(c) It is place of origin of lateral roots								
	(d) It gives rise both to root hairs and root branches								
2.	2. Coleoptile and coleorhiza are protective coverings in maize grain. W	hich	is true?						
	(a) Coleorhiza is a covering of plumule (b) Coleoptile is cover								
	(c) Coleoptile is covering of plumule (d) Coleorhiza is cov	ering	g of endosperm						
З.	3. If a plant bears unisexual, bisexual and even neutral flowers, it is ca	alled							
	(a) Bisexual (b) Polygamous (c) Bigamous	(d)	Monoecious						
4.	4. Lateral line system found in fishes has been lost in Amphibia becau	ise of							
	(a) Development of sturdy legs								
	(b) Change over to herbivorous feeding								
	(c) Occurrence of metamorphosis in Amphibia								
	(d) Evolution to terrestrial habitat								
5.	5. Body having meshwork of cells, internal cavities lined with food filte indirect development are the characteristic features of phylum	ering	flagellated cells an						
	(a) Coelenterata (b) Porifera (c) Mollusca	(d)	protozoa						
6.	6. The protoplasmic strands connecting the two adjacent plant cells th material occur are called	rougl	n which exchange o						
	(a) Plasmalemma (b) Plasmodesmata (c) Tonofibrils	(d)	Spindle fibers						
7.	7. In cockroach, the excretory organs are Malpighian tubules. They are	e foui	nd on the						
	(a) Distal region of mid gut (b) Proximal region	of mi	d gut						
	(c) Proximal region of hind gut (d) Junction of mid g	gut a	nd hind gut						
8.	8. Which of the following is an anticoagulant and checks blood coagula	tion i	n blood vessels?						
	(a) Prothrombin (b) Globulin (c) Thromboplastin	(d)	Heparin						
9.	9. The oblique cross connections to form a contractile network of fib discs are characteristically found in	1							
	(a) Striated muscle (b) Unstriated muscle(C) Cardiac muscle	(d)	Radial muscle						
0.	0. Go through the following statement.								
	(i) The cambium is generally more active on the inner side than o	(i) The cambium is generally more active on the inner side than on the outer.							
	(ii) The autumn wood is darker and has a higher density than sprin	g woo	od.						
	(iii) In stem, the secondary xylem shows distinction into protoxylem a in the form of patches.	nd m	etaxylem and occur						
	(iv) The tracheids and vessels of the sapwood get plugged by the parenchyma cells into their cavities, called tyloses.	ingro	wth of the adjacer						
	Which of these are correct?								
	(a) (i), (ii) & (iii) (b) (i), (ii) & (iv) (c) (i) & (ii)	(d)	(i), (iii) & (iv)						

nelps excel ir	III DUATUS									
81.	Enzymes are biocatalysts. They									
	(a) increase the rate of biochemical reaction	on, dec	crease the activati	on e	nergy					
	(b) increase the rate of biochemical reaction	on, inc	crease the activati	on ei	nergy					
	(c) decrease the rate of biochemical reaction	on, ind	crease the activati	on e	nergy					
	(d) decrease the rate of biochemical reaction	on, deo	crease the activat	ion e	nergy					
82.	When the margins of sepals or petals overlap condition is termed as	When the margins of sepals or petals overlap one another without any particular direction, the condition is termed as								
	(a) imbricate (b) twisted	(c)	valvate	(d)	vexillary					
33.	When a fresh water protozoan is placed in r	narine	water							
	(a) contractile vacuole disappears									
	(b) contractile vacuole increases in size									
	(c) a number of contractile vacuoles appear									
	(d) the contractile vacuole remains unchar	nged								
34.	DNA replication in bacteria occurs									
	(a) within nuclelous	(b)	prior to fission							
	(c) just before transcription	(d)	during S phase							
85.	On hydrolysis, Nucleoside does not yield									
	(a) Phosphoric acid (b) Pentose sugar	(c)	Purine	(d)	Pyrimidine					
86.	Thorns of Bougainvillea and tendrils of Cucu	ırbita	shows							
	(a) Homology (b) Analogy	(c)	Adaptive radiation	on (d)	Atavism					
37.	Viruses have									
	(a) DNA core, Lipid coat	(b)	DNA or RNA core, Protein coat							
	(c) DNA or RNA core, Plasma membrane	(d)	DNA containing	nucle	eus, lipid envelope					
88.	In Lichens, algal component is known as									
	(a) Mycobiont (b) Phycobiont	(c)	Schizont	(d)	Heterocyst					
39 .	The outer covering of cartilage is called as									
	(a) Peritoneum (b) Periosteum	(c)	Endosteum	(d)	Perichondrium					
90.	Arteries have									
	(a) thick wall, narrow lumen	(b)	thick wall, broad lumen							
	(c) thin wall, broad lumen	(d)	thin wall, narrov	v lum	len					

 $\times \cdot \times \cdot \times \cdot \times \cdot \times$

